Install Pytorch, Tensorflow and Keras
Deep learning frameworks
Deep learning frameworks offer building blocks for designing, training and validating deep neural networks, through a high level programming interface. Widely used deep learning frameworks such as Caffe2, Cognitive toolkit, MXNet, PyTorch, TensorFlow and others rely on GPU-accelerated libraries such as cuDNN and NCCL to deliver high-performance multi-GPU accelerated training.
Check CUDA version
nvcc --version // for gpu
Install Pytorch
conda create --name <env-name> python=<version-no.>
source activate <env-name>
conda install pytorch-cpu torchvision-cpu -c pytorch // cpu version
conda install pytorch torchvision -c pytorch // gpu version, select appropiate CUDA version
Install Tensorflow
conda create --name <env-name> python=<version-no.>
source activate <env-name>
pip install tensorflow==<version-no.> // cpu version
pip install tensorflow-gpu==<version-no.> // gpu version
Compatibility of tensorflow-gpu with appropiate CUDA verison from here
Install Keras with Tensorflow
conda create --name keras python=<version-no.>
source activate keras
pip install tensorflow==<version-no.> // use gpu or cpu version
pip install keras